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Abstract

Quantum discord is a measure of nonclassical correlations between subsystems of a
quantum system which are not necessarily entangled. We consider a minimal complexity
setup consisting of six fermions. In the presence of a superconductor, six Majorana zero
modes (MZM) emerge and the system can be partitioned to perform non-trivial measure-
ments on its subsystems. We compute the quantum discord for a class of states (Werner
states) within the degenerate ground state. We show that a non-vanishing discord is
present for the fully mixed state and we discuss it as a measure of the intrinsic correlation
of the system.
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Chapter 1

Introduction

Majorana zero modes (MZM) —a type of localised quasiparticle —hold great promise for
topological quantum computing [I]. Over the years they have evolved from a largely
theoretical topic into an active experimental field at the forefront of condensed matter
physics [2]. This transformation was driven in part by the translation of abstract models
[1] into realistic blueprints realisable in the laboratory [3]. Majorana quasiparticles are a
twist on an idea of Ettore Majorana. In 1937, Majorana rewrote Dirac’s theory of spin—
1/2 particles to allow for real wave solutions [4, 5]. The consequence was that Majorana
particles are identical to their antiparticles. Indirect signaures of Majorana’s particles
with a twist are being shown to emerge in one-dimensional wires in the presence of a
superconductor and small magnetic field [6, [7, 8]. Their non-Abelian statistics make
MZM a candidate for fault-tolerant information processing [9]. Methods for preparation,
manipulation, and readout of MZM are being implemented [2]. An important step towards
their application for quantum information processing is a thorough understanding of their
quantum states. Romito and Gefen [10] have proposed a device in which MZM emerging
from topology exhibit ubiquitous non-local quantum entanglement. Interestingly, there
may exist non-local quantum correlations which are not due to entanglement.

One measure of quantum correlations is the quantum discord. Quantum correlations
were originally thought to be entirely due to entanglement pairs [I1]. Ollivier and Zurek
[12] and Henderson and Vedral [13] found that it is not necessarily the case. They introduce
quantum discord as a measure of genuine quantum correlations which can be present in
non-pure non-entangled states. Quantum discord is defined as the difference between
two measures of mutual information. One measure of the total information content of a
bipartite system is the information of its subsystems as well as their mutual information.
In the classical limit, Bayes’ Theorem gives an equivalent measure of the total information.
For quantum systems the difference between these measures is nonzero due to non-local
effects of measurements of noncommutative observables. Quantum discord has been shown
to be more robust than entanglement against decoherence in certain enviornments [14]
15] and shows quantum advantage in some computational models without or with little
entanglement [16], [17].

Since quantum discord measures quantum correlations not necessarily due to entangle-
ment, it is interesting to see how it behaves in systems with non-trivial non-local correla-
tions originating from topology. Romito and Gefen [10] have devised a minimal complexity
setup consisting of six superconducting wires which host Majorana zero modes at their
ends. At low energy, the system consists of six Majorana degrees of freedom. The system is
partitioned in two and each set probed by an external detector using available techniques.
Any allowed state in the degenerate Majorana space is nonlocally entangled. Computing
the quantum discord require a full model describing the bulk, not only the Majorana zero
energy end states. We devise a minimal complexity device consisting of six fermions which
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interact via nearest-neighbour hopping and Cooper pairing (i.e. superconductivity). At
zero energy and in the limit that the superconducting coherence length is zero, the device
hosts six MZM at its edges. They can be probed by the detector devised by Romito and
Gefen. Remarkably, the four-degenerate Majorana ground space exhibits similar algebraic
structure as two-qubit systems [I8]. By showing that the spin—1/2 algebra holds in a
simple model and a more general one, we suggest that the algebra is independent of the
particular configuration of the junction.

From the four ground states, we can construct a maximally entangled state and the
maximally mixed state —a state which is a statistical ensemble of the four pure states.
We define the Werner state in the ground space as a linear combination of a maximally
entangled and the maximally mixed state. The Werner state traces out a path from the
maximally mixed state to the particular maximally entangled state. In two-qubit systems
the maximally mixed state generates zero discord. Remarkably, the maximally mixed state
in the Majorana setup shows nonzero discord. We show analytically that quantum discord
is ubiquitous for any Werner state. We also show that it is monotonically increasing as
it traces out its path away from the maximally mixed state. Finally, we show that the
Majorana setup exhibit strikingly similar discord to two-qubit systems as a result of the
spin—1/2 algebra.

To introduce the reader to quantum discord, we present a classical method for quan-
tifying information (Sec. , known as Shannon entropy. We also introduce a precise
reformulation of quantum mechanics (Sec. , known as the von Neumann formulation,
in which states are represented by density operators. It is often omitted from introductory
quantum mechanics courses in favour of more pragmatic approaches [19]. The density op-
erator formalism allows us to ‘trace over’ degrees of freedom of a system, enabling us to
partition the system into sets. We can then determine the mutual information between
these sets, as measured by the quantum mutual information and the classical mutual
information.

In the classical limit, the quantum mutual information and the classical mutual infor-
mation are equivalent. However, for quantum states there is a discrepency between them.
This discrepency defines the quantum discord. Few analytical expressions of quantum
discord exist. Luo [I8] has ingeniously obtained one such solution for two-qubit systems.
We review Luo’s calculation in section In order to compare the quantum discord
with entanglement, we will need to compare it with a good measure of entanglement. The
entanglement entropy is the canonical measure of entanglement for pure states. But for
mixed states it is no longer a good measure. Accordingly, we present a more general mea-
sure of entanglement in section the entanglement of formation. These tools we will
need in the investigation of quantum discord in a minimal complexity Majorana-based de-
vice, which we model in chapter[3] First we study the entanglement entropy across simple
systems (Kitaev chains). Understanding the behaviour of entanglement in these simple
systems furthers our analysis of the minimal complexity device. Finally, we obtain an
analytical expression of the quantum discord of Werner states in the ground-state space.
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Background

2.1 Quantum discord

Quantum discord is a measure of nonclassical correlations between two subsystems of
a quantum system. It was proposed simultaneously by Harold Ollivier and Wojciech
H. Zurek [12], and L. Henderson and Vlatko Vedral [13] (See [I1] for historical notes.)
Two classically identical expressions for the mutual information generally differ when the
systems involved are quantum. This difference defines the quantum discord. Separability
of the density matrix describing a pair of systems does not guarantee vanishing of the
discord, thus showing that absence of entanglement does not imply classicality.

First we introduce a measure of information, known as Shannon entropy. Then we
present two classically equivalent ways of quantifying the mutual information of two sub-
systems using Bayes’ Theorem. In a bipartite quantum system, these two quantities are
not equivalent due to correlations and noncommutativity of operators. This discrepancy
is known as quantum discord.

2.1.1 Classical information

Following Quantum Computation and Quantum Information by Nielsen and Chuang [20],
we review a measure of uncertainty associated with classical probability distributions,
known as the Shannon entropy. The Shannon entropy of a discrete random variable X

with possible values {z1,...,x,} and associated probability distribution, pi,...,pn, is
defined as
n
S(X)=S(p1,--pn) ==Y pulogps. (2.1)
x

It quantifies the information gained after a measurement of X or equivalently, our uncer-
tainty about X before the measurement. One can choose to measure information to any
base. We choose the minimal one —base two —and refer to the units as ’bits’. The Shannon
entropy is the minimum number of bits required to store the information being produced
by the source, in such a way that at a later time the information can be reconstructed
—the result of Shannons noiseless coding theorem [21].

Given two random variables X and Y, the joint Shannon entropy is defined as

S(X,Y) ==Y pa,y)logp(z, y), (2:2)
x oy

where p(x,y) is a joint, or multivariate probability distribution of X and Y.

The joint entropy measures our total uncertainty about the pair of distributions (X, Y).
Suppose we know the value of Y, so we have acquired S(Y') bits of information about the
pair (X,Y). The remaining uncertainty about the pair (X,Y’) is associated with our
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S(X,Y)

Figure 2.1: Modified from Fig 1.1 of V. Vedral [22]. The relationship between the entropy
S(X), the joint entropy S(X,Y), the conditional entropy S(X|Y’) and the mutual infor-
mation /(X :Y). From this diagram, we can see how the different entropies are related
by addition; for example, S(X,Y) = S(X|Y)+I(X :Y)+ S(Y|X).

remaining lack of knowledge about X, even given that we know Y. The entropy of X
conditional on knowing Y is therefore defined by

S(X|Y) = S(X,Y) - S(Y). (2.3)

The mutual information content of X and Y measures how much information X and
Y have in common

I(X:Y)=8(X)+85(Y) - S(X,Y). (2.4)

Bayes’ Theorem tells us an equivalent way of writing the mutual information is

I(X :Y) = S(X) — S(X|Y). (2.5)

2.1.2 Von Neumann formalism of quantum mechanics

We now generalise the definition of the Shannon entropy to quantum states following von
Neumann [23]. Suppose a system is in one of a number of states |i;), with respective
probabilities p;. Von Neumann defines the density operator as

p= ZZ%W’)(%’\- (2.6)

Since the wavefunction is normalised and its associated probabilities are nonzero, p is a
density operator if and only if its trace is 1 and it is a positive operator.

In the von Neumann formalism, quantum measurements are described by a collec-
tion {M,,} of measurement operators, known as a positive operator valued measurement
(POVM) [24]. {M,,} are operators acting on the state space of the system being mea-
sured. The index m refers to the measurement outcomes that may occur in an experiment.
If the state of the quantum system is p immediately before the measurement, then the
probability that result m occurs is given by

p(m) = Tr(M], My,p), (2.7)
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and the state of the system after the measurement is

M pM,
M‘ (2.8)
p(m)
The measurement operators satisfy the completeness condition,
> Mf My, =1 (2.9)
m

Finally, the state space of a composite physical system is the tensor product of the state
spaces of the component physical systems. Moreover, if we have subsystems numbered 1
through n, and the subsystem number ¢ is prepared in the state p;, then the joint state
for the composite system is p; ® - -+ ® py,.

The density operator allows us to write any state [¢) as p = |¢)(¢|. In this case
Tr(p?) = 1 and we say that p corresponds to a pure state. We may introduce uncertainty
into the preparation by writing p = >, p;|1;)(¢;]. In this case p may have been prepared
in any one of |¢;) with corresponding probabilities p;. Such a p satisfies Tr(p?) < 1 and is
known as a mized state.

2.1.3 Entanglement entropy

The von Neumann entropy, or entanglement entropy is a quantum extension of the Shan-
non entropy, replacing classical probability distributions with density operators acting on
a composite Hilbert space and the summation is replaced by the trace

S(p) = —Trplogsy p. (2.10)

The spectral theorem allows us to write p = UXUT, where ¥ =Diag()\;), \; are the
eigenvalue of p and U is a unitary matrix. This gives us a computationally easier form of
the entropy

S(p) = = Tr(USU log,(USUT)) = = Tr(Slog, T) = — »  Ailogy As. (2.11)

This affords a general property of the entropy. Given an ensemble {|i;)}o<i<n of
orthogonal states, p will have an n-dimensional column space {|¢;) }o<i<n and rank(p) = n.
Since Tr(p) = 1, pure states will have a single eigenvalue 1 and entropy S(p) = 0 by
I'Hopital’s Rule. Mixed states will have several eigenvalues and S(p) < 1. A maximally
mixed state in a Hilbert space of dimension 7 will have rank 7, for example, the identity
matrix //7. Maximally mixed states I/n have entropy — >, % log, % = logy 7.

2.1.4 The reduced density operator

Perhaps the deepest application of the density operator is as a virtually indispensable tool
in the analysis in the subsystems of a composite quantum system. Such a description is
provided by the reduced density operator.

Suppose we have physical systems A and B, whose state is described by a density
operator pAB. The reduced density operator for system A is defined as

pt = Trp(p?), (2.12)
where Trp is a linear map of operators known as the the partial trace over system B

Trp(la1){az| @ [b1)(ba|) = |ar){az| Tr(|b1)(b2]), (2.13)
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where |a1),|a2) are any two vectors in the state space of A, and |b1),|b2) are any two
vectors in the state space of B.

The Schmidt decomposition for bipartite systems [25] allows us to pick a basis {|ia)}
for subsystem A and {|ig)} for B such that each state |i4) will be correlated with a
particular state |ig) of B. That is

) = Z Ailia) ® lip). (2.14)

This simplifies calculations of the partial trace since
pa = Y Alia)ial Trlin)is| (2.15)
= Z AFlia)(ial (2.16)

pPE = Z)‘?‘iB><iB|v (2.17)

where Tr|ig)(ig| = 1 by normality. Hence the eigenvalues of p# and p? are equal and
S(p?) = S(p®). The entanglement entropy of either member of the pair are equal, which
we expect intuitively.

2.1.5 Quantum information

Harold Ollivier and Wojciech H. Zurek [12], and L. Henderson and Vlatko Vedral [13]
generalise the classical mutual information into the quantum scenario and investigate its
consequences and implications.

The first natural extension is the quantum mutual information

I(p) = S(p*)+5(p") = S(p) (2.18)
= S(p™) = S(plp") (2.19)

where S(p|p?) = S(p) — S(p?). Classically, entropy quantifies the number of microstates
available to the system for a specified state. But bipartite quantum states exist for which
the entropy of the subsystems is greater than the entropy of the composite system. So the
von Neumann conditional entropy S(p|p?) can be negative. A negative entropy does not
have an obvious physical meaning. We can define the conditional entropy in another way,
so that it is always positive. We define the quantum conditional entropy as the average
entropy of the states of A after a measurement {By} is performed on B, weighted by the
probability outcome py

S(p{BrY) = prS(pr)- (2.20)
k
The measurement-induced quantum mutual information is

I(pl{Bx}) = S(p") = S(pl{Bi})- (2.21)

There are infinitely many measurements we can perform on B, so we will choose the one
that makes S(p|{Bx}) minimum (we want to learn as much about A by measuring B).
Then the classical mutual information is

Clp) = S(pf“w{gkf} (S(pl{Bk})) (2.22)
= sup I(p|{Bi}). (2.23)
{Bx}
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Unlike in classical information, the two ways of expressing quantum mutual information
are actually different. This is because the quantum mutual information can actually reach
the value of 25(p?), while the classical mutual information is bounded between 0 and
S(p™).

This discrepancy between two natural yet different quantum analogs of the classical
mutual information is is known as the quantum discord

Q(p) = 1(p) — C(p) (2:24)

and quantifies measurement-induced nonclassical correlations. For entangled pure states
the discord is one and for unentangled pure states it’s zero. Ollivier and Zurek, and
Henderson and Vedral found that for mixed states the discord takes on intermediate values
between zero and one. Importantly, discord can exist even we there is no entanglement,
as will will see in section Quantum discord in the absence of entanglement is due to
the noncommutativity of quantum operators.

Discordant states may be useful for quantum information processing [26], 27]. Vedral
[11] noted (Feb 2017) that it is still an open question if universal quantum computation
can be done without entanglement in the general case of mixed states.

2.1.6 Quantum discord for two-qubit systems

Due to the complicated optimisation invloved, it is usually intractable to evaluate the
quantum discord for generic cases. Nevertheless, S. Luo [I8] evaluates the discord analyt-
ically for a large family of two-qubit systems. By “qubits” we mean two-level quantum
systems —such as the spin of a spin—1/2 particle or the polarization of a photon.
Two-qubit systems are described by Hilbert space C? ® C2. We choose the standard
computational base {]00), [01), |10), |11) }. A general two-qubit bipartite state is local

unitary equivalent to
3
1
P:4<I+chaj®aj>7 (225)

Jj=1

where ¢; are real constants satisfying certain constraints such that p is a well-defined
density operator and o; are the Pauli spin-1/2 matrices. (By local unitary equivalence,
we mean that we can always change the chosen basis for each qubit.) The eigenvalues
{Ni}iego,1,2,33 of p depend on c1, c2, c3 such that A; € [0, 1]. The reduced density operators
p® = p® = I/2. Consequently, the quantum mutual information in p is

3
I(p)=2+> Nlogy A (2.26)
=0

Each qubit will be in one of two eigenstates of the basis {|k)}, and since the measurement
can be performed in an arbitrary basis V' € U(2), the local von Neumann measurement
for party b can be written as

{B, =VIL,VT:k=0,1}. (2.27)
After the measurement { By}, the state p will change to the ensemble {p, pr} with

1

(I ® By)p(I® By) (2.28)
Pk

Pk

and py := Tr(I®@ By )p(I®By). For simplicity, let ¢ := max{|c1], |ca|, |c3|}. As expected, the
quantum conditional entropy S(p|{Bx}) and the quantum mutual information I(p|{B})

10
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are functions of the state p and measurement { By}, but the classical mutual information
is a function of the state only

C(p) = 1gclog2(1—c)+ 1;Clog2(1+0). (2.29)
Thus the quantum discord is
Qlp) = I(p)—Clp) (2.30)
= 2+ 23: Arlogy Ap — ! ; ¢ logy(1 —¢) — Ltc logs(1 + ¢). (2.31)
1=0
In the particular case ¢; = ca = ¢3 = —c¢, p turns out to be the Werner state
p= (l—c)i—i-c]\ll_ﬂlll_],ce 0,1] (2.32)

where |¥7) = %(IOD —|10)) is a maximally entangled Bell state and I/4 is a maximally
mixed state. Accordingly, we have
3(1—c¢) 1+ 3c

I(p) = T10g2(1 —c)+

logy (1 + 3¢), (2.33)

1—c¢ 1+¢
Clp) = —, logy(1 —¢) +

logy(1 + ¢), (2.34)
and the quantum discord

_l—c 1+ 14 3¢

Qo) =~ loga(1 =€) = —5~logy(1+) +

logy (1 + 3c). (2.35)

In the case of the maximally entangled Bell state |U~)(¥~|, we have that the total
correlations, I(p) = 2 are equally divided into the classical, C(p) = 1 and quantum,
Q(p) = 1 correlations. The maximally mixed state I/4 is essentially an operator formalism
of the classical bipartite probability distribution (Eq. without any quantum nature,
Q(p) = 0. The von Neumann generalisations of the total and classical mutual information
equal the Shannon mutual information and there are no quantum correlations.

It is interesting to compare the quantum discord with the entanglement, and in par-
ticular, inquire whether they give the same qualitative characterisations of quantum cor-
relations. Accordingly, we review a measure of entanglement in the following section, and
following Luo, compare the discord with the entanglement for two-qubit systems.

2.2 Entanglement of formation

One of the main goals in quantum information theory is to develop a theory of entangle-
ment [2§]. Entanglement is a property of bipartite systems —that is systems consisting of
two parts A and B that are too far apart to interact, and whose state, lies in a Hilbert
space Ha® Hp. A cornerstone of this theory is a good measure of bipartite entanglement.
Measurements are performed by two observers, “Alice” and “Bob” each having access to
one of the subsystems. We allow Alice and Bob to perform local operations (LO), e.g.,
unitary transformations and measurements, on their respective subsystems and to com-
municate with each other classically (CC). For pure bipartite states a good measure of
entanglement has been found: the reduced Von Neumann entropy, defined in section[2.1.4]

The situation for mixed states is much more complex —it can be measured via different
quantifiers, which, in general, do not coincide with each other. One of them is entanglement

11
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Figure 2.2: From S. Luo [I8] Quantum discord Q(p) and entanglement of formation &£(p)
versus ¢ for the Werner state p = (1 — c)ﬁ + ¢|¥7)(U~|. Here we see that there are no
simple dominance relations. Indeed, Q(p) < £(p) when ¢ € (0.879,1) and Q(p) > £(p),
otherwise. The correlations have unit ’bit’.

of formation, introduced by Bennet et al. [29]. This measure is intended to quantify the
number of singlet states needed to create a given state. It is defined as the minimum
average entanglement of an ensemble of pure states that represents the given mixed state

p=>_;Dipi,
E(p) = min» _ piS(p{") = min Y piS(pf). (2.36)
(2 (2

The entanglement of formation involves extremisations that are difficult to handle analyt-
ically. However, in the special case of entanglement between two binary quantum systems
(“qubits”) an explicit formula for arbitrary states has ingeniously been found by Wooters
[30, 31]:

In the standard basis {|11),|Tl), [{1), [J4)}, define the “spin flip” transformation on
the state of a pair of qubits p by

p = (02 ® 02)p*(02 ® 02), (2.37)
and the concurrence as
0(,0) = max{O, 91 - 92 - 93 - 04}, (238)

where the 6;’s are the square roots of the eigenvalues of pp. The formula for the entangle-
ment of formation of a mixed state p of two qubits is then

E(p) = £(0(p)); (2.39)

where the function £ is defined by

£0)=h (H ”1_92>

5 ; (2.40)

12
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h(z) = —zlogyx — (1 — z)logy(1 — x). (2.41)

S. Luo [18] plots the entanglement of formation against the quantum discord for the
Werner state (Fig. . Interestingly, there are no simple dominance relations between
them. They are incomparable in the sense that there exist states in which the discord is
larger than the entanglement and conversely, states in which the entanglement is larger
than the discord. Discord and entanglement are different not only quantitatively, but also
qualitatively.

2.3 Quantum correlations (entanglement) in topologically
protected systems

Since quantum discord measures quantum correlations not necessarily due to entangle-
ment, it is interesting to see how it behaves in systems with non-trivial non-local correla-
tions originating from topology. Romito and Gefen [10] have devised a minimal complexity
setup consisting of six Majorana zero modes (MZM). They find that any allowed state in
the degenerate Majorana space is nonlocally entangled. They show how to measure the
presence of this entanglement using available techniques.

The minimal complexity setup consists of a multiterminal junction made up of six
one-dimensional topological superconductors (branches) which meet at a common point,
depicted in Fig. Each branch o € {1,...,6} is a one-dimensional spinless p-wave
superconductor characterised by a gap A, and by MZM ~,,~,, at the edges of the wire.
At the junction, Josephson coupling pairs up the Majorana modes in the junction v{, ..., v
to finite energy states. These states are then gapped out of the ground-state space. The
MZM 7y, ...,76 far from the junction are the remaining zero energy degrees of freedom,
which span a 22 degenerate ground state. The ground space may exchange pairs of fermions
with the underlying superconductor, so that the number of fermions is not well-defined.
However, the parity of the Majorana system is a good quantum number, so that the
degenerate ground space accommodates two subspaces, each of a definite parity. Without
loss of generality, we restrict ourselves to the four-dimensional odd subspace.

The MZM 71, ...,76 can be partitioned into two different sets, left (L) and right (R).
We depict the four possible paritionings in Fig. [10]. A separate external detector can be
tuned to measure any combination of pairs of products of MZM. We focus on example,
Fig. a), in which the left set consists of 71,73 and 5 and the external detector can
measure any operator of the form

O = cos 0101, +sinfr, cos ¢ro, 1 +sinfp sinproy 1, (2.42)

where 0, = —i7173,0,,1 = —i7375 and o0y, = —iy571. Details of the measurement
procedure are discussed by Romito and Gefen.

It turns out that the expectation values of measurements are bounded, —1 < (O L) <1
Genuine quantum correlations underlying a state can be identified through the expecta-
tion value of correlated measurements. Bell’s theorem asserts that a state within a local
hidden variables theory (also known as local realism) satisfies the Bell inequality [32] and
(more conducive to experimental testing) the Clauser-Horne-Shimony-Holt (CHSH) [33]
inequality

¢ = [(0L0R) — (OLOR)| + [(01,0%) + (01,0r)] < 2, (2.43)

where OL, OZ and OR, O}% are pairs of spatially separable sets of observables. Instead, for
non-locally entangled quantum states, measurements can satisfy 2 < C < 2v/2 [34, 35, [36]
37, providing evidence of genuine quantum correlations.

13
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Figure 2.3: From Romito and Gefen [10]. Romito and Gefen’s minimal complexity setup
is a multiterminal junction consisting of six branches (blue). Branches are topological
superconductors which host Majorana zero modes (MZM) at their edges (red dots). MZM
at the centre (faded red) couple and are projected out of the ground state-space. The
six MZM at the ends (solid red) 1, ..., s constitute the zero energy degrees of freedom.
These can be probed by a left detector (not shown) which measures operators indicated
by solid (green) arrows and a right detector which measures operators indicated by dashed
(orange) arrows. Arrows are labelled by the corresponding spin algebra operators, such as
0z,1, = —i7v375 in (a). The four possible bipartitionings are depicted with the corresponding
measurement operators (a)—(d). CHSH correlations are necessarily violated in at least one
of the four partitionings. Therefore any allowed state in the topologically protected ground
space is non-locally entangled.

14
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Quantum systems generically realise both entangled and unentangled states. The novel
aspect of Romito and Gefen’s work is that they show that, in the degenerate space spanned
by MZM, any state is nonlocally entangled. That is, (at least) one bipartitioning of the
MZM can always be found which violates the CHSH inequality.

For their minimal complexity setup, a generic state of the four-dimensional odd parity
ground space is

) = Ad} yd} 58 |0) + B 5]0) + Cd} ,|0) — Dl 6/0). (244)

where |A|? 4+ |B|?> + |C|?> + |D|? = 1 and the zero energy fermionic degrees of freedom are

d1’3 = (71 + i73)/2, (2.45)
diz = (ya+1i72)/2, (2.46)
dsg = (v5+1i75)/2, (2.47)

and the state |0) is defined by d; 3|0) = d42|0) = d56/0) = 0. Notice that o, 1,0, 1,0,.L
satisfy the Pauli spin—1/2 algebra. Similar operators can be found on the right set, so that
the state |¢) reads

V) = A[tetr) + Bltoir) + Cletr) + D Lir), (2.48)

where |15), |);) are the eigenstates of o, ;, (i = L, R). The maximal value of the CHSH
correlation C is given by

6135‘246 == 2\/1 + 4’AD - BC|2, (249)

where the subscript indicates the partitioning in which the measurement is performed.
Maximal CHSH violations for the other three partitions are given by

Cssajiz2 = 21/1+ |AC — DB, (2.50)
Cazijse3 = 2¢/1+ [AB — CDP?, (2.51)
Coarjzsa = 21/1+ 4|A% + C2? + D2 + B2|2. (2.52)

The pillar of Romito and Gefen’s paper is that the condition Cy35246 = Cs64j132 = Ca21|563 =
Cea1)352 = 2 can never be satisfied. Spatially separated measurements of the system violate
CHSH correlations in at least one of the four partitions. Hence any allowed state in the
topologically protected ground subspace is nonlocally entangled.

This pervasive non-local entanglement occurs due to the topology of the system. It is
interesting to study quantum correlations not necessarily due to entanglement. For this
reason, we compute quantum discord in a setup similar to Romito and Gefen.
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Chapter 3

Model and computational methods

We are interested in studying quantum discord in the simplest six Majorana zero mode
model. In order to compute the discord, we will need a full model describing the bulk, not
only the Majorana zero energy end-states. This is provided by the Kitaev chain.

3.1 Kitaev chain

The Kitaev chain is a one-dimensional model proposed by Kitaev [1] in which Majorana
zero modes (MZM) —a type of localised quasiparticle —emerge at the edge points. The
model consists of a tight-binding chain of spinless electrons and a superconducting term.
Physical realisations of Kitaev chains have been engineered experimentally with semi-
conductor wires [0l [7, 8] and magnetic impurity chains [39]. Kitaev’s Hamiltonian reads

N
1
Hkitaev = Z —u(a}aj - 5) + Aajaji1 + A*a;{ﬂa} - w(a}ajH + a}Haj). (3.1)
j=1
The terms correspond to the chemical potential energy u, the Cooper pairing (i.e. super-
conducting) amplitude A and the nearest-neighbour hopping amplitude w, respectively.
The j label the sites 1,..., N and the a} and a; are the Dirac fermion creation and annihi-
lation operators, respectively. We rewrite them in terms of the Majorana fermion degrees

of freedom, 71, ...,vnN,

aj—a

Y2i—-1 = Gj + CL;, Y25 = ) ] = 17""N7 (32)

(a)

o 90 0 o 0 oo oo o

(b)

P0H—00—00—00—00—00—0 0—0 0O

Figure 3.1: From S. R. Elliot and M. Franz [38]. Two phases of the Kitaev chain. (a)
The trivial phase, 2|w| < |u|: Majorana fermions on each lattice site can be thought of
as bound into ordinary fermions. (b) The topological phase, 2|w| > |u|: Majoranas on
neighboring sites are bound, leaving two unpaired Majorana fermions at the ends of the
chain.
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CHAPTER 3 3.1. KITAEV CHAIN

which obey the Clifford algebra {v;,¥m} = 20;m, ’le =, l,m=12,..,2N. The
Kitaev chain then reads
L1
i
Hitaey = 5 > [ — 21725 + (W A+ [A)y2572541 + (—w + [A)v2i-172i42] . (3:3)
J
We consider two special cases.
(a) The trivial case: |[A|=w=0,u<0

L—1 . L—1
1 t
Hirivial = —p E (a}aj - 5) = 5(_,“) E Y25 —172;- (3.4)
j=1 J

The Majorana operators from the same site are paired together to form a ground state
with occupation number 0.
(b) The topological case: |A| =w > 0,u =0
L—1

Htopological =iw Z V257Y25+1- (35)
J

Here the Majorana operators from different sites are paired together. At the end points we

find localised zero-energy MZM =1, von and the ground state shows a two-fold degeneracy,
corresponding to even and odd parity subspaces.

3.1.1 A two-site Kitaev chain

An understanding of entanglement in Kitaev chains will be important in the analysis of the
minimal complexity setup. We consider the simplest Kitaev chain, which consists of two
fermion sites. The sites interact with a hopping term w and an induced superconducting
gap A. We set the chemical potential to zero for simplicity. The situation is sketched in
Fig. In order to compute the entanglement between the partitions, we require a full
model describing the bulk, not only the Majorana zero energy end-states. Therefore the
Hamiltonian is

Hj—p = —w(aJ{ag + agal) + Aajag + A*agai, (3.6)

Following Kitaev [1], we define Majorana fermions in the following way

Mm = a+al, (3.7)
Y= (@ —a))fi, (3.8)
v = ap+al, (3.9)
vy, = (ag—al)/i. (3.10)

When w = A, the chain is said to be topological and the superconducting coherence length
is zero. The Hamiltonian may then be rewritten as

Hj—s = iw(y172)- (3.11)

The finite energy states are %(’yg—i—i’yg) and %(’)/2 —1i73). 71,7, are zero energy eigenstates as
they do not appear in the Hamiltonian. We pair them into Dirac fermions in the following

way
d = ln+iw) (312)
d = S —in), (3.13)
do = é(vwm), (3.14)
dy = %(71*2'74)- (3.15)
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3.1. KITAEV CHAIN CHAPTER 3

(b) Three-site Kitaev chain, composed of two
(a) Two-site Kitaev chain. subsystems: site one and sites two and three.

(¢) Three-site Kitaev chain partitioned into (d) Three-site Kitaev chain partitioned into
sites one and two and site three. sites one and three and site two.

Figure 3.2: Blue sites are Dirac fermion degrees of freedom which interact via nearest
neighbour hopping and Cooper pairing (i.e. superconductivity) terms. In the topological
phase, Majorana zero modes emerge at the edges of the chain. We can partition the
chain into two subsystems (red and white) by tracing over degrees of freedom. No matter
where we partition the chain or the number of sites in the chain, we find the entropy to
be the same, suggesting entanglement is due entirely to the Majorana zero modes and is
independent of the length of the chain.
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CHAPTER 3 3.1. KITAEV CHAIN

We choose the orthogonal ground states to satisfy d|0) = 0 and d|1) = |0). The basis
for the two-site system is then {]00), |01), |10), |11) }, where d acts on the first entry of
the Kronecker product and dy onto the second. Since the states associated with d don’t
appear in the Hamiltonian H;—2, the general equation for the ground states are

|¥) = |00) + B|01), (3.16)

where a, 5 € C are to be determined. We want to solve this in terms of the original Dirac
fermion basis {(00), |01), [10), |11) }, so that we may trace over their degrees of freedom
in order to compute the entanglement entropy. Accordingly, we write the ground states
as

W) = AJ00) 4+ B|01) + C|10) 4 D|11) (3.17)
= A|00) + Ba}|00) + Cal|00) + Dalal|00), (3.18)
) = A|00) + B'ab]00) + C’al|00) + D'alal|00), (3.19)

where A, B, C, D € C are to be determined and |¥y) = |[00) and |¥;) = |01). To determine
the constants, we have four equalities

d|¥o) = 0, (3.20)
do|¥o) = 0, (3.21)
d|vy) 0, (3.22)
do|W1) = [Wo), (3.23)
which together with normalisation yield
1
Vo) = 5(100>+I11>), (3.24)
1
V1) = —=(101) + [10)), (3.25)

V2

which are even and odd parity ground states, as we expect. We now form the most general
ground state, which is the pure state

|¥) = a|¥o) + B[¥1), (3.26)

constrained by |a|? +|3|2 = 1. To obtain the entanglement entropy of the state, we write
the state as its density matrix

) = %(Q\OOH—BIOD+a\10>+5!11>)(h-0-) (3.27)
a2 aB* af* |af?
_ Lfes 1P 182 a8 (3.28)

2| a’B B [BP o

o aB* af* |af?

The reduced density matrices are

1 * *
pL:pR=2<aﬁ*ia*5 op Jlra[j)- (3.29)

This is all we need to compute the entanglement entropy S(p”) = — Tr(p” log, p*). How-
ever, finding logarithms of matrices is in general difficult. In the special case of diagonal
matrices, computations are more straightforward. To diagonalise matrices, we make use

of the spectral theorem. Accordingly, we find must find the eigenvalues of the reduced

density matrices, which are HET’”, where z = af* + o*5. The entanglement entropy is then

1+zx 1—
Sty = S(p") = - logy(1+ ) — —

. T logy(1 — ) + 1. (3.30)
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3.1. KITAEV CHAIN CHAPTER 3

3.1.2 A three-site Kitaev chain

To devise a minimal complexity setup we must first thoroughly understand the behaviour
of entanglement across Kitaev chains. We want to determine whether entanglement en-
tropy depends on the length of the Kitaev chain or the choice of bipartitioning. Accord-
ingly, we study a Kitaev chain consisting of three fermion sites, as depicted in Fig[3.2b}
. In doing so we leave four-dimensional Hilbert space and enter eight dimensions.
Computations become difficult to perform by hand so we make use of a Mathematica
script to move forward. The original Dirac fermion basis is now

{ ’000>, a1]000>, a2]000>, a1a2]000>, a3]000>, a1a3‘000>, a2a3|000>, a1a2a3]000> }, (3.31)
which for simplicity, we refer to as
{]000), [001), |010), [011), [100), |101), |110), [111) }. (3.32)

In order to perform algebraic computations with fermionic operators, we represent them
using matrices in Mathematica. The matrices satisfy the anticommutative fermion algebra
and are defined as

0000O0O0TO OO
10000000
0000O0O0TO OO
o 00100000
ap = 00000O0GO0TO0 | <3'33)
00001000
0000O0O0TO OO
00000O0T10
0 0 00O 0 00
0 0 000 0 00
1 0 000 0 00
o 0 -1 000 0 0O
ay = 00 000 0 00 | (3'34)
0 0 000 0 00
00 001 0 00
0 0 00O0-100
00 0 000O0O0O
00 0 000O0O
00 0 00O0O0O
o 00 0 000O0O
as = 1 0 0 00000 (3'35)
0 -1 0 00000
0 0 =1 00000
00 0 10000

In order to compute the entanglement entropy, we need a full description, including the
bulk, not only the MZM at the edges. The Hamiltonian for a Kitaev chain with three sites
is

Hj—3 = *w(aJ{UQ + agag + agal + agaz) + A(ajaz + agas) + A*(a;ai + agag), (3.36)

where w is the hopping amplitude and A is the induced superconducting gap. In the
topological phase, w = A, Majorana operators from different sites are paired together
Hj—s = iw(y172 +7273)- (3.37)

In this case the superconducting coherence length is zero. We can define new fermion

annihilation operators
1
di = 52 (ai — alT — Qj4+1 — a;-rJrl), (3.38)

where i € Z/37. Ground states satisfy the condition
d1|Wo) = da| Vo) = d3| Vo) = d1|V1) = do| V1) = 0. (3.39)
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CHAPTER 3 3.2. MAJORANA-BASED DEVICE

There are two orthogonal states |Wo) and |¥;) with this property. Indeed, Majorana
oeprators at the edges remain unpaired, so can write

d3|Wy) = |Up). (3.40)
Solving these conditions, we obtain
1
Wy) = Z(|000> +]011) + 101) + |110>>, (3.41)
1
v = 3 (|001> +1010) + 100) + |111>). (3.42)
A general ground state is then
[¥) = alWo) + B]P1). (3.43)

The entropy of entanglement is defined as the entropy of either bipartitioning with the
degrees of freedom of the other traced out. We trace out qubits one and two using M.
Tame’s code [40], obtaining p'2?, and trace out qubits two and three to obtain p?3. Similarly,
we can trace out qubits one and three to obtain p'3. The eigenvalues for all three density
matrices are equal with values

3 (1= V=G —as?) . 5 (14 e - as?). (3.40)

We can trace out qubits 1,2 or 3 obtaining p', p?, p3, respectively. The eigenvalues for the
density matrices are equal with values

0, 0, (1 — /= (Bar - aﬁ*)2> . <1 /- (Bar - aﬂ*)2> . (3.45)

The entropy of entanglement is therefore

Y * _ *)2 _ * *\2
s = ] V (ﬁ; a8 (1 V (ﬂ; o)

1 _ * *)2 1 _ * *)2
1ty (ﬁ2a B +y/ <ﬁ2a N

where X labels a partial trace over either 1,2,3,12,23 or 13. These results show that the
entanglement entropy across a Kitaev chain is independent of the choice of partitioning.
Further, the entropy for two sites is equal to that of three sites (up to a phase factor of
—1), showing that the entanglement does not depend on the length of the chain, in the
limit that the superconducting coherence length is zero.

3.2 Majorana-based device

3.2.1 Minimal complexity setup
Simplest model

We are interested in studying quantum discord in a topologically protected system. The
simplest model consists of six Majoranas. Sites one and two interact, as do three and four,
and five and six. The interaction terms are a hopping amplitude w and a Cooper pairing
(superconducting) amplitude A. For simplicity, we set the chemical potential to zero. In
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a3 e ® 44

as @ ® 4g
(a) A simple model: six fermion sites form two partitions
as in the most general model. In this case only fermions
one and two, three and four, and five and six interact (with
hopping term w and superconducting term A, shown in
blue). In other words, the system consists of three two-site
Kitaev chains which do not interact with each other.

1Y Y2 Y5
°o % ° x

Y33 Y4 vy
o % o X

/ /
V575 Y6 Ve
o % o X
(b) Topological case (w = A): as in the most general model,
MZM appear on the wire edges. The external detector mea-
sures unpaired Majorana occupancies. We find that states
in the degenerate ground subspace obey the Pauli spin—
1/2 algebra. Consequently, the quantum discord of Werner
states is the same in both models.
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CHAPTER 3 3.2. MAJORANA-BASED DEVICE

other words, the system consists of three two-site Kitaev chains which do not interact with
each other. The situation is depicted in figure In order to compute the discord, we
need a full Hamiltonian describing the bulk, for which the Hamiltonian is

Hgimple = —w (aiag + a§a4 + agaﬁ) + A<a1a2 + azaq + a5a6) + h.c. (3.47)

To compute the discord, we need the entanglement entropy of ground states in the parti-
tioning. The Hilbert space for the partitioning is defined by Dirac fermion operators. We
use matrices to represent their anticommutative algebra. In Mathematica, we write the
2" x 2™ sparse arrays

27L71
aZT = Z SparseArray
i

Band [{2i_1 +1i,4} , Automatic, {2, 21}] — H(_l)(;jill)
j=1

{2727 |, (3.48)

where n is the dimension of the Hilbert space and states are taken to be in the standard
computational basis. i labels the fermion operators. Sparse arrays are a computationally
faster alternative to matrices if particular values appear frequently (in this case zero, one
and negative one). We can create an off-diagonal sparse array using Band. Automatic fills
in the array, starting at the element (2=! 44, 4) and moving across in steps of (2¢~1 2¢=1),
with the the value H;'.:l(—l)(zzj—ll), where (5;11) is the binomial coefficient. The summa-
tion Z?l_l then adds the off-diagonal sparse arrays 1, ...,2""! together, creating a banded
sparse array.

We can define Majorana fermion degrees of freedom ~;,7/ from the Dirac fermion
degree of freedom a; in the following way

vi=ai+al, 4 =(a—a))i. (3.49)
Majorana operators are required to obey the Clifford algebra

{Var 18} = 2008, {Var75} = 0. (3.50)

The Kitaev wires in their topological phases (w = A) are depicted in figure In this
case, the superconducting coherence length is zero and the Hamiltonian becomes

ngneral =iw <7172 + 7{%74 + 7&76) (351)

The nonzero eigenstates are mixtures of the paired Majorana degrees of freedom

Y6 + Y5, (3.52)
Y4 + 05, (3.53)
Y2 + i1, (3.54)
Y6 — 75, (3.55)
Y4 — 07, (3.56)
Yo — 71, (3.57)

and the zero energy eigenstates are unpaired Majorana modes at the wire edges
V65 V5> Vi» V3> V2 1+ (3.58)
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One can define new fermion annihilation operators
di = —ivs — 5 — 72 + 76, (3.59)
da = iv] + ivh + Y2 + Y4, (3.60)
d3 = i3 +iv5 — Y2 + 76, (3.61)
)

which span Majorana sites 71,74, V5,72, 74, 76. From the unpaired Majorana modes, we
can define operators

dy = 71— Y2

B (3.63)
ds = % (3.64)
de = w (3.65)
Ground states |¥;) are defined by the condition
di|W;) = da|¥;) = ds|¥;) = 0. (3.66)

There are eight orthogonal states which satisfy this property. We define |¥1) by d;|¥;) = 0,
fori=1,...6 and

|@a) = dld}|wo), (3.67)
|@s) = dfdl|wo), (3.68)
|W4) = dfd}|Wo), (3.69)
|U5) = df| Do), (3.70)
|T6) = di| W), (3.71)
|Wr) = df| W), (3.72)
|Ws) = dfdld}|Wo). (3.73)

The Majorana subspace does not accommodate a well-defined number of fermions: it may
exchange pairs of fermions with the underlying superconductor. Nevertheless, the parity
of the Majorana system is a good quantum number and gives rise to two degenerate sub-
spaces, each of a definite parity. States |¥1),...,|¥,) belong to the even parity subspace
and |¥s),...,|¥g) belong to the odd subspace. Without loss of generality, we restrict
ourselves to the four-degenerate even parity manifold.

Define a paritioning of the system by two sets: 71,73,75 belonging to the left (L)
set and 7%, v}, 76 to the right (R) set. Romito and Gefen [I0] describe a measurement
procedure in which a coupled detector measures any combination of pairs of Majorana
products from the left or right set

Oz, = —1Y375, Oy,L = —1Y571, Oz,L = —i7173, (3.74)

O2,R = —1V6Y2s Oy,R = 1976 Oz,R = —i747a- (3.75)

Physically, this is a measurement of the occupancy of certain Dirac fermion degrees of
freedom, constructed from the Majorana degrees of freedom. These operators satisfy the

Pauli spin—1/2 algebra. Using Mathematica to proceed though the lengthy algebra, we
obtain their eigenstates to be

ITLTR) = \‘I’1>+\/§i\‘1’2>7 ITLir) = W\/;’M7 (3.76)
otgy = R0y = ) — i) (3.77)

V2 V2
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The coupled detector can measure any operator of the form

A~

O, =cosOpo, 1, +sinff cos o, 1 +sinfysinproy . (3.78)

Romito and Gefen choose this observable as its expectation values are bounded, —1 <
(O) < 1. They can then detect violations of the Bell [32], or Clauser-Horne-Shimony-
Holt (CHSH) [33] inequalities, providing evidence of genuine quantum correlations. For
our purposes, the spin—1/2 algebra allows us to compare the Majorana model with two-
qubit systems. Furthermore, it enables us to measure non-classical correlations using
Romito and Gefen’s physically realisable detector.

More general model

We now present a more general model, in which the degenerate subspace still obeys the
Pauli spin—1/2 algebra. As before, consider six qubits labelled in the same way. Sites
from either partition may interact with any site in the other via a hopping term w and a
superconducting term A. For simplicity, we again set the chemical potential to zero. The
situation is depicted in figure The Hamiltonian is

Hgeneral = —w<a1a2 + a{a4 + a{aﬁ + a;t)az + a§a4 + a§a6 + agaz + a§a4 + aga(a)

+ A (alag + a1a4 + a1ag + azas + azaq + azag + asas + asaq + a5a6)
+he (3.79)

In the Majorana basis with w = A, the superconducting coherence length is zero and the
Hamiltonian is

Hgeneral = 1w (%’m + 774 + Y176 + 1372 + V374 + 1376 + V502 + 1574 + %%%)- (3.80)

Now the Majorana operators from different sites are paired together, as depicted in figure
Unfortunately, the rank of this Hamiltonian is two so that the ground-state space is
too large to progress. We therefore flip the interaction energy of sites three and six, five
and four, and five and six (depicted as green lines in figure . The Hamiltonian is then

Hgeneral = —w(aiaz + a1a4 + aJ{aﬁ + agag + a;ga4 — agaﬁ + agag — aga4 — ag%)

+ A(a1a2 + aja4 + ay1ae + azag + agaqy — azag + asa2 — a564 — (15@6)
+ h.c.
= iw (Y172 + Y17 + 7196 + 512 + 757 = %6 + 292 — 257 — 1576 )- (3.81)

The eigenstates at finite eigenenergies are again mixtures of the paired Majorana de-
grees of freedom

—ing = i75 — Y2 + %,
i+ i + Y2 + Y4
Y3 + i — 72 + Y65
—iv) — i3 + 72 + 14
M — s+ s 4 Y2 — Y4+ 76
—ivy + 893 — V5 + 72 — Y4 + -

The zero energy eigenstates are exactly those of the simple model

’Yév V5, ’74,17 735 7&7 - (388)
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as a4

as Qg

(a) Minimal complexity setup: six fermion sites are
partitioned into two sets: the left (L) set consists of
fermions a1, a3, a5 and the right (R) set consists of fermions
as, a4, ag. Fermions from either partition may interact with
any fermions in the other though a hopping term w and
a superconducting term A, as shown in blue. Interaction
terms between sites three and six, five and four, and five
and six are required to have the sign of w and A reversed
as shown in green.

1Y} Y2 Y4
o ®

Y373
o

V5 V5 Y6 Vg
o

(b) Topological phase (w = A): Majorana operators from
different sites pair together, leaving six unpaired zero en-
ergy Majorana operators. Pairs of these MZM can be
probed by an external detector coupled to each partition.
Non-classical correlations can then be measured. We quan-
tum correlations which do not necessarily include entangle-
ment.
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One define fermion operators

dy = —ivg — ivE — 2 + Ve, (3.89)

do = i) +ivh + Y2 + Y4, (3.90)

ds = iy] — ivh + ivk + 2 — Y4 + e, (3.91)
J— y /

dy = % (3.92)
_ y /

ds = % (3.93)
— )y ,

de = w (3.94)

Ground states |¥;) are defined in terms of d; in exactly the same way as for the simple
model, as is the coupled detector. Accordingly, we define [111r), [Trdr), $2TR), HLdR),
in the exact same way as above and the spin—1/2 algebra will of course hold in this
degenerate even subspace.

3.3 Calculation of quantum discord

To identify whether quantum correlations exist in the system which are not necessarily
due to entanglement, we investigate the quantum discord which quantifies the difference
between total and classical correlations (Section [2.1.5)).

We consider the maximally mixed state

P Tetr) Telel + [Todr)(Todrl + Lotr) Lolr| + Nidr) (Lo ir]
4 )

(3.95)

and a maximally entangled (singlet) state

. (’TL¢R> = HLTR>> (<TL¢R| = <¢LTR|>. (3.96)

V2 V2

We introduce a parameter ¢ € [0, 1] which takes us continuously from a maximally mixed
state to the singlet state. This can be interpreted as the removal of noise from the system
and is modelled by the Werner state

p=(1—c)po+cp-. (3.97)

3.3.1 Total mutual information

To calculate the total mutual information we need two quantities: the entropy of the state
of the entire system and the entropy of one of its two partitions. Accordingly, the nonzero
eigenvalues of the Werner state are %, %, %, % so that the entropy is
3(1—r¢) 1+3c

S(p) = ————loga(1 —¢) -

log, (1 + 3c¢) + 2. (3.98)

We define the state pf* by tracing over the degrees of freedom on the left (that is,
tracing out the parity of branches 1, 3 and 5), which we perform using M. Tame’s code
[40). Similarly, p” is the state of the system with the right partition traced out. Of course,
the entropies S(p’) = S(pf?). The eight-fold degenerate eigenvalues are 1/8, so that the
entanglement entropy is

S(p*) = 3. (3.99)
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From our results concerning Kitaev chains of two and three sites, we expect the entangle-
ment entropy to be independent of the system length, in the limit that the superconducting
coherence length is zero. For finite superconducting length, we expect small deviations
from the value of the entropy. We have obtained the same result for the entropy of a
system in which the junction was simple and in which the junction was more general. Ac-
cordingly, we expect the entanglement entropy for all six MZM systems to be independent
of the particular configuration of the junction.

3.3.2 Classical mutual information

Measurements to obtain the classical mutual information are required to be of von Neu-
mann type [12], that is that they must sum to the identity. Accordingly, for the L set
Y1, 73,75 the coupled detector can measure any operator of the form

By = (I+kOp)/2, (3.100)

where I is the identity operator on the state p, k € {—1,1} parametrise the measurements
and Oy, is defined by Eq.

If we perform a measurement {By} locally on the L-set, then the quantum state,
conditioned on the measurement outcome labelled by k, changes to

1
pr = —BrpBy, (3.101)
Pk

with probability pp = Tr(BgpBy). The nonzero eigenvalues of py are (1 —¢)/2, (1+¢)/2.
With this conditional density operator, an alternative variant of quantum conditional
entropy (with respect to the measurement {By}) is defined as the average entropy

> peS(ox) (3.102)
k

1-— 1
= — QClogQ(l—c)— te

S(p{Bx})

logy(1+¢) + 1, (3.103)

and turns out to be independent of the specific measurement By and hence sup¢p, 1 S(p[{ Bk })
= S(p|{Bx}). The classical mutual information is then

Clp) = {S;lp} I(pl{Bk}) = S(p*) — S(p{ Bi})- (3.104)

3.3.3 Quantum discord

Now, we have two quantum analogues of the classical mutual information: the total mutual
information, which are the mutual correlations of the subsystems; and the classical mutual
information, which is the maximum information we can learn about one subsystem by
performing measurements on the other. Their difference is interpreted as a measure of
quantum correlations by Olliver and Zurek [12] and Henderson and Vedral [I3] and is
known as the quantum discord

Qlp) = I(p)—Clp) (3.105)
= S(p") + s(p) + sup S(p|{Bs}) (3.106)
{Br}
= S(h) -1+ = Clogy(1—¢)
7 1+c¢ 1+ 3c

logy(1 +¢) + logy (1 + 3c). (3.107)

2 4
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Figure 3.5: Flip operation in our setup. Defining the flip operation is a necessary step in
Vollbrecht and Werner’s calculation of the entanglement of formation for Werner states in
arbitrary dimensions. The flip operator F' flips the occupancy of each fermion site in the
H3 @ H? bipartite space, where the fermion occupancy is the occupancy of the respective
pair of edge Majorana zero modes. White and red dots are occupied and unoccupied
fermion sites, blue lines are superconducting wires which coalesce at the centre to form
the junction.

3.3.4 Entanglement of formation

In order to compare the quantum discord with entanglement, we would need to compare
it with the entanglement of formation, which is customarily used as a measure of entangle-
ment [29,31]. The entanglement of formation is defined for arbitrary dimensional bipartite
systems. It quantifies the number of pure singlets needed to create a state with no further
transfer of quantum information. Due to the optimisations involved, the entanglement of
formation is hard to obtain analytically. Vollbrecht and Werner [41] ingeniously find the
quantum discord for some special symmetric states.

Consider a composite Hilbert space H = H1 ® Ho. Two states p, p’ are regarded as
“equally entangled” if they differ only by a choice of basis in H; and Hs or, equivalently,
if there are unitary operators U; acting on H; such that p' = (U; ® Us2)p(U; ® Usz)*. If in
this equation p’ = p, we call U = (U; ® Us) a (local) symmetry of the entangled state p.

In particular, consider the Hilbert space H = H; ® H; and the group of unitaries of
the form U ® U, where U is a unitary on H;. Vollbrecht and Werner find that U ® U
invariant states —Werner states —are of the form p = al + SF, where o, 8 € C such that
Trp =1, I is the identity operator and F' is a ‘flip operator’ defined in the basis |i) of H;
in the following way

F= Z\z’,j)(j,ﬂ. (3.108)

The general equation of the entanglement of formation of a Werner state in arbitrary
dimensions is then

0, f(p) <0,
E(p) = 3.109
) {5(f(p)), f(p) =0, ( )
where £ was defined in Section 2.2 and
f(p) = — Tx(pF), (3.110)

parametrises p and ranges from —1 to 1. Unfortunately the Werner state in our setup
cannot be parametrised by the identity and flip operation in H3 ® H3. The degenerate
ground subspace H?* isn’t seperable, so a flip operator in this space isn’t defined. Further
work to find the entanglement of formation should be done so that it may be compared
to the quantum discord.
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Results

4.1 Entanglement entropy in Kitaev chains

4.1.1 Two-sites

We investigate the entanglement of a Kitaev chain at zero energy. We begin with the sim-
plest model: a chain with two Dirac fermion sites depicted in Fig. Two Majorana
operators are defined per fermionic site. Two eigenstates of the Hamiltonian are nonzero
and corresponded to Majorana fermions paired into Dirac fermions at finite energy. There
also exist two zero energy solutions corresponding to Majorana fermions at the edges. Fol-
lowing Kitaev [I], we pair them to form two zero-energy “Majorana zero modes” (MZM).
At zero energy there exists an even and an odd parity ground state. From a superposi-
tion of these two states, we form the density matrix to simplify further calculations. As
expected for factorisable states, the entropy is S(p) = 0 —see Eq. In the density
matrix representation, we are able to trace over the degrees of freedom of one of the two
original fermion sites. The entropy of this quantity is a measure of entanglement [20] and
is known as the entropy of entanglement. It is equal to

1+x 1—=x
S(p") = S(p") = == logo(1 +2) — —

logs(1 — ) + 1, (4.1)

where x = af* + o*5. In our model, we hypothesis that it is a measure of entanglement
between the zero energy states. To evaluate this hypothesis we will compare this result to
the entropy of a three-site Kitaev chain.

Now, observe that when the state is an equal superposition of even and odd states,
a = 8 = 1/2, the state exhibits no entanglement, S(p”) = 0. When either the state is
odda=0,8=1oreven a =1, =0, S(p’) = 1 -maximal entanglement is achieved.
Since |¥) is a superposition of these two instances, we expect a continuum of states for
the entropies S(p”) € [0,1]. Accordingly, we parametrise the amplitudes of the even and
odd states by a = Ae, 3 = Be'?, where A, B, 6, ¢ are real numbers. The phase difference
between the odd even state |¥g) and odd state |¥y) is 6 = 0 — ¢, so that the entropy is a
function of two real values only

x=2A\1— A2 cosé, (4.2)

where 0 < A < 1 is the magnitude of the amplitude of the even state and 0 < ¢ < 7 is
the phase difference between even and odd states. We plot the entropy in Fig. as a
function of A and §. Here we see that the entropy is bounded by 0 and 1, as expected for
a two-dimensional system (see discussion at the end of Section and varies smoothly
as we hypothesised above.

30



CHAPTER /4 4.1. ENTANGLEMENT ENTROPY IN KITAEV CHAINS

3.0

248

2.0

" 15

1.0

045

0.0

o
o
=
ia

(a) Entropy S(p*) for the two-site Kitaev chain as a function of the am-
plitude of the even ground-state —1 < A < 1 and the phase difference
0 < § < 7 between the amplitudes of the two ground states. The entropy
is bound between zero and log, 1, where n = 2 is the dimension of the
Hilbert space.
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(b) Similar plot to (a) for the three-site Kitaev chain. The results are the
same up to a phase difference of 7.
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4.1.2 Three-sites

We seek to investigate the entanglement between bipartitions of the Kitaev chain in its
topological phase. We expect that the entanglement will be due to existence of MZM.
Therefore we expect to obtain the same entropy of entanglement regardless of where we
perform the partition.

As above, there exist two zero-energy eigenstates —one odd, one even. We take a
superposition of these states. Of course, it is pure so that S(p) = 0, as expected. Tracing
over either side of a partitioning gives the same entropy of entanglement, S(p??) = S(p')
(shown in Fig. , S(p'2) = S(p?) (Fig. and S(p'?) = S(p?) (Fig. , as we
expect.

Interestingly, the six subsystem partitionings have equal entropies: let 0 < A < 1 be
the amplitude of the even parity eigenstate, on which the odd state depends on, and let
0 <4 < 7 be their phase difference. Then the entropy of entanglement is

1+ 2 1—2a
S(p') = — 5 loga(1+4') —

logy(1 —2') + 1, (4.3)

where 2/ = 24v/1 — A?sind. We plot this in Fig. m This is the same result as obtained
for a Kitaev chain with two sites, up to a phase difference m. Although we can always
adjust phases, we cannot adjust the phase difference because the two ground states are are
fixed by the constraints Eq. [3:39] We infer that the phase factor will alternate depending
on the parity of fermions in the system.

Crucially, we have shown that no matter where we choose to bipartition the chain and
regardless of the length of the chain, we find that the states associated with the MZM
exhibit the same entropy of entanglement. We interpret this as the nonlocal entanglement
of the MZM at the edges of the Kitaev chain.

4.2 Minimal complexity setup

4.2.1 Quantum discord

The minimal complexity setup (Fig. for our investigation consists of six fermions
which form two partitions. Fermions from each partition interact with fermions in the
other via a hopping term and an induced superconducing gap. Kitaev [I] has shown
Majorana operators from different sites to pair when w = A, leaving six unpaired MZM.
Romito and Gefen [I0] have devised a detection scheme to measure occupancies of the
MZM. In our similar setup, we have reproduced their results that the four-fold degenerate
subspace satisfies the Pauli spin—1/2 algebra. Furthermore, we have shown that the Pauli
algebra holds in a simpler setup (Fig. , involving fewer interactions.

The degenerate ground subspace is the four-dimensional Hilbert space H2*. It is
spanned by linear combinations of Dirac fermion occupancies in an H? @ H> Hilbert space.
To perform calculations on the states, we change basis from the three fermionic degrees
of freedom d; which defined the ground states, to the Majorana -; degrees of freedom,
which we can then rewrite in terms of the original six Dirac fermion sites a;. This was a
difficult step in the calculations and was performed using Mathematica (see for example,
Eq. .

We then define the Werner state which is a linear combination of the maximally mixed
and a maximally entangled state in the four-dimensional subspace H*. The Werner state
depends on a parameter c. At ¢ = 0, the Werner state is general: it is the maximally
mixed ensemble of pure states in the degenerate ground subspace. As ¢ — 1, the Werner
state traces out a path towards a maximally entangled state. Physically, the parameter
may be interpreted as the removal of noise from the entangled state.
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Figure 4.2: Entropy of the Werner state p as a function of its parametrisation ¢ € [0,1] in
the Majorana-based device. ¢ = 0 corresponds to the maximally mixed state in the four
dimensional degenerate subspace. ¢ = 1 is a maximally entangled pure state. Although
the Werner state in the degenerate ground space exists in the inseparable four-dimensional
space H*, the entropy is exactly the same as that of the two-qubit system —specified by
the separable space H? @ H2.

The Werner state has rank four and thus four eigenvalues. It obeys the same algebra
as the states in two-qubit systems, however is not obvious whether inseparability of the
Hilbert space will produce different eigenvalues from the two-qubit system. Interestingly,
we find the eigenvalues are the same, hence obeying the Pauli algebra is sufficient to
obtain the same entropy as the two-qubit state. We plot the entropy of the Werner
state as a function of its parametrisation in Fig. The entropy when the state is
maximally entangled is zero, as expected for pure states. The maximally mixed state
(c = 0) has entropy two, which corresponds to a maximally mixed state in the four
dimensional degenerate subspace.

Tracing over the degrees of freedom of each partition yields the entropy of entanglement
between the subsystems. Werner states in the Majorana setup and two-qubit systems are
formed from states and operators which satisfy the Pauli algebra. Perhaps satisfying the
Pauli algebra is enough for both systems to produce the same entropy of entanglement.
Conversely, tracing over the larger Hilbert space of the Majorana setup may yield different
eigenvalues than that of two-qubit systems.

We discover that the subsystem entropy is three, whereas recall for two-qubits it is one.
This is the maximal entanglement in a space of three Dirac fermion degrees of freedom.
It must be stressed that the von Neumann entropy of subsystems is a measure of entan-
glement only when states are separable, i.e. only when the Werner state is parametrised
by ¢ = 1. Unfortunately for mixed states, the von Neumann entropy is basis dependent
and one must find the minimum over all basis for the state.

The entropy of the composite system and of its subsystems together measure the total
(classical and quantum) correlations in the system. This quantity is known as the total
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mutual information and equals

I(p) = 25(p") - S(p) (4.4)

1- 1+3
= ¥10g2(1—0)+ + clog2(1+3c)+4, (4.5)

which is exactly the result Luo obtains for two-qubit systems, up to an additional constant
of four. Physically, this constant signifies the existence of four additional bits of mutual
information in the Majorana setup than that of two-qubit systems.

To compare the classical and quantum correlations, we now consider measurement
induced correlations, which are interpreted as a measure of classical correlations by Olliver
and Zurek [12] and Henderson and Vedral [I3]. The MZM are partitioned into two separate
sets, each of which is probed by an external detector. Physically, this is a measurement
of the occupancy of the Dirac fermion degrees of freedom belonging to the partition.
Measurements are separable for the two-qubit and Majorana setup. States in the two-
qubit setup are also separable, that is they exist in the space H? ® H?, whereas states in
the Majorana setup exist in H*. Despite this, we find (using Mathematica to manipulate
the lengthy algebra involved) that the quantum conditional entropy S(p|{By}) for the
Majorana system is exactly the result obtained for two-qubits. Peculiarly, the quantum
conditional entropy is independent of the measurement parameters and negates the difficult
task of finding the supremum of the entropy.

The entropy of the state post-measurement is always less than or equal to that before
the measurement. When the state is pure there is no uncertainty about the preparation
of the state and the entropy is zero. Mixed states represent lack of certainty about the
preparation of the state —it may have been prepared in one of several pure states. The
entropy is a measure of the number of different possible pure states the mixed state was
prepared from. Measurements reduce the uncertainty about the preparation and therefore
reduce the entropy (see Fig. . Although the state after a measurement depends
on the measurement parameters, its entropy doesn’t. It appears that no matter which
measurement we decide to perform, they all reveal the same amount of information about
the preparation of the state.

From the (measurement-induced) quantum conditional entropy and the entanglement
entropy of the subsystems we have the classical mutual information. It quantifies the
maximum information we can obtain about the state of one subsystem by performing
measurements on the other. In other words, it is a measure of the classical correlations
which exist between the partitions. It is given by

Clp) = {S};p} I(p{ Bx}) (4.6)
= S(p") = S(pl{Bx}) (4.7)
= 2+ 1_clog2(1—c)+ 1+Clog2(1+c), (4.8)

which is exactly the result for two-qubit systems, up to an additional constant of two. The
Majorana system exhibits two additional classical bits of mutual information than that of
two-qubit systems. This is as a result of the larger Hilbert space of the Majorana setup
than that of two-qubit systems.

Now the difference between total and classical correlations can be interpreted as a
measure of quantum correlations [I12, 13]. This quantity is the quantum discord, with
value

1—-c¢ 1+c 1+ 3¢
1 logy(1 —¢) — 5 logy(1 4 ¢) + 1

Qp) =2+ logsy(1 + 3c). (4.9)
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Figure 4.3: The entropy of the Werner state (gold) and the entropy post the measurement
{By} (blue) versus the parametrisation of the Werner state ¢ € [0,1]. When the state
is pure (¢ = 1), the entropy is zero and no further information may be extracted by
performing a measurement. When the state is mixed (¢ # 1), measurements reveal more
information about the state and hence reduce the entropy (or uncertainty) about the state.

We have obtained Luo’s result for two-qubit systems (Fig. with an additional constant
of two. We plot the situation in Fig. [4.4] The larger Hilbert space of the Majorana setup
than that of two qubits leads precisely to an additional two bits of classical and of quantum
mutual information. Nevertheless, both quantities behave exactly as those of two-qubit
systems.

We have shown that the quantum discord is ubiquitous for linear combinations of the
maximally entangled state and a maximally mixed state in the degenerate ground subspace
of a Majorana-based device. This is unsurprising as Romito and Gefen have shown that
entanglement is ubiquitous for any state in this space. It is, however, non-trivial that the
discord of the Majorana-based device, specified in H* should behave exactly as that of
two-qubit systems H? ® H2.

4.2.2 Entanglement of formation

To determine whether nonclassical correlations in the Majorana-based device are due en-
tirely to entanglement, we compare the quantum discord with the quantum entanglement.
For pure states, the von Neumann entropy of either subsystem is the canonical measure
of entanglement [20]. However for mixed states, the von Neumann entropy is basis depen-
dent. For this reason we use a particular measure of entanglement, known as the entropy
of formation [29], which minimises the entropy of a state over all its basis representations.
This minimisation procedure makes the entropy of formation both a good measure of en-
tanglement and a difficult one to compute. Analytical solutions have only been found in
two-qubit systems [30, B1] and larger systems obeying particular symmetries [41]. For this
reason, Luo [1§] is able to compare his solution for the quantum discord of a two-qubit
system with the entanglement of formation.

The Majorana setup consists of six qubits so the analysis is less straightforward. The
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Quantum discord of the Werner state
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Figure 4.4: Quantum discord of the Werner state p as a function of its parametrisation
¢ € [0,1], which physically corresponds to the removal of noise. ¢ = 0 corresponds to the
maximally mixed state and ¢ = 1 is the maximally entangled pure state. Although the
Werner state in the Majorana setup exists in the inseparable four-dimensional space H?,
the quantum discord is exactly the same as that of the two-qubit system —the separable
space H2®@H?, up to an additional constant of two which we attribute to the larger Hilbert
space of the Majorana system.

Werner state in H* is inseparable. Consequently, a flip operation is undefined. States in
H3@H3 obey U®U symmetry. The Werner state however, cannot be parametrised by the
identity and flip operation. Consequently, we have not found an analytical solution for the
entanglement of formation. Further work to find a numerical computation should be done
to advance the investigation. Another route to advance the investigation will be to find
an alternative state in the degenerate ground subspace which satisfies U ® U symmetries
for which Vollbrecht and Werner have obtained analytical solutions.
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Conclusion

We have modelled the behaviour of entanglement in the ground state of a particular
quantum wire, known as a Kitaev chain. The Kitaev chain consists of fermion sites aligned
along one dimension. The sites may interact via a nearest-neighbour hopping term and a
Cooper pairing term (an induced superconducting gap). A new operator basis is chosen,
known as the Majorana basis, in which two Majorana operators are associated with each
site. The chain exhibits a so-called topological phase, in which Majoranas from alternate
sites pair up. Consequently, Majorana operators at the edges are left unpaired and exist
at zero energy. We have quantified the entanglement of these “Majorana zero-modes”
(MZM) using the von Neumann entropy and shown that it is independent of the choice of
bipartitioning of the chain. Furthermore, the entanglement for a Kitaev chain consisting
of two sites is equal to that of a chain consisting of three sites (up to a phase difference of
—1), demonstrating entanglement to be independent of the length of the chain.

We have devised a minimal complexity Majorana-based device for investigating quan-
tum discord. The device consists of six fermions which we partition into two sets. Fermions
in each set interact with fermions in the other via a hopping term and a superconduct-
ing term. A Hamiltonian for the situation is obtained. In its topological phase, the
system reveals six unpaired MZM. We find eight associated ground states. Due to the
superconducting term, there exist two subspaces of even and odd parity. Without loss
of generality, we restrict ourselves to the even degenerate subspace and show the states
satisfy the Pauli spin—1/2 algebra. A less general model involving fewer interactions is
also shown to obey the spin—1/2 algebra, suggesting that the algebra doesn’t depend on
the particular configuration of the junction.

To identify quantum correlations present in the system, we investigate the quantum
discord for a Werner state. The Werner state traces out a path from the maximally mixed
state in the degenerate ground subspace to a particular maximally entangled state. Total
correlations, (measurement-induced) classical correlations and the quantum discord are all
shown to be exactly equal to those of two-qubit systems, up to a constant. The constant
represents ubiquitous additional information in the Majorana setup, not present in two-
qubit systems. It is due to the larger Hilbert space of the Majorana setup. Measurements
on one subsystem are shown to reveal equal bits of information about the other subsystem,
regardless of the particular measurement performed.

Further work should be done to show the ubiquitousness of quantum correlations in
the degenerate subspace. A straightforward approach will be to find the quantum discord
for a path from the maximally mixed state to every maximally entangled state in the
degenerate subspace.

An important problem is to determine whether quantum discord is due to entanglement
or other quantum correlations. Few analytical solutions for the entanglement of formation
exist. Therefore we propose two approaches: a numerical calculation of the entanglement
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of the Werner state or an analytical solution, taking advantage of the unitary U ® U
symmetry of the Majorana device. An identity and flip operation are then defined following
Vollbrecht and Werner [41]. The operations generate a Werner state in H3 ® H3, which
can then be projected into the degenerate ground subspace H*. Quantum discord can
then be compared with the entanglement of formation.
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